Unruh effect and Quantum Computing

Taku Izubuchi

discussing with

Andreas Hackl, Daniel Knüttel, Christoph Lehner, Yuta Kikuchi, Gumaro Rendon, Akio Tomiya

arXiv:1606.09505

Synthetic Unruh effect in cold atoms

Javier Rodríguez-Laguna,^{1, 2} Leticia Tarruell,² Maciej Lewenstein,^{2, 3} and Alessio Celi²

¹Dto. Física Fundamental, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain

²ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of

Science and Technology, 08860 Castelldefels (Barcelona), Spain

³ICREA-Institució Catalana de Recerca i Estudis Avançats, Lluis Companys 23, 08010 Barcelona, Spain

We propose to simulate a Dirac field near an event horizon using ultracold atoms in an optical lattice. Such a quantum simulator allows for the observation of the celebrated Unruh effect. Our proposal involves three stages: (1) preparation of the ground state of a massless 2D Dirac field in Minkowski spacetime; (2) quench of the optical lattice setup to simulate how an accelerated observer would view that state; (3) measurement of the local quantum fluctuation spectra by one-particle excitation spectroscopy in order to simulate a De Witt detector. According to Unruh's prediction, fluctuations measured in such a way must be thermal. Moreover, following Takagi's inversion theorem, they will obey the *Bose-Einstein* distribution, which will smoothly transform into the *Fermi-Dirac* as one of the dimensions of the lattice is reduced.

PACS numbers: 04.62.+v, 37.10.Jk, 03.65.Pm, 71.10.Fd

arXiv:0710.5373

The Unruh effect and its applications

Luís C. B. Crispino*

Faculdade de Física, Universidade Federal do Pará, Campus Universitário do Guamá, 66075-900, Belém, Pará, Brazil

Atsushi Higuchi[†]

Department of Mathematics, University of York, Heslington, York YO10 5DD, United Kingdom

George E. A. Matsas[‡]

Instituto de Física Teórica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900, São Paulo, SP, Brazil

(Dated: February 2, 2008)

It has been thirty years since the discovery of the Unruh effect. It has played a crucial role in our understanding that the particle content of a field theory is observer dependent. This effect is important in its own right and as a way to understand the phenomenon of particle emission from black holes and cosmological horizons. Here, we review the Unruh effect with particular emphasis to its applications. We also comment on a number of recent developments and discuss some controversies. Effort is also made to clarify what seems to be common misconceptions.

Unruh effect

 An accelerated observer through the flat Minkowski spacetime vacuum will observe a thermal bath, a: constant acceleration

$$k_B T_U = \frac{\hbar a}{2\pi}.$$

- Similar to Hawking radiation
- Event Horizon (Black wall vs Schwarzschild radius) prevents communication between different region of space time, which plays a role of heat bath
- Thermal effect without underlying stochasticity
- → Thermal mixed state from pure quantum state

Hawking radiation

- Black Hole of mass M
- Vacuum fluctuation, particle-antiparticle pair creation/annihilation, near Schwarzschild radius
- one of pair escape from BH, and the other fall into BH
- Emitted particle spectrum turns out to be blackbody radiation with temperature $\hbar c^3$

 $\frac{1-8\pi kGM}{8\pi kGM}$ Rlackhole lose mass (energy conservations)

Blackhole lose mass (energy conservation), eventually evaporate, information paradox

[Nature]

Rindler spacetime

- Flat Minkowski spacetime
- Consider an observer with constant acceleration a=1 in x-axis.
 Observer is at rest at t=0 and x=1
- Natural coordinate for the observer is Rindler coordinate (comoving coordinate) $(t,x) \rightarrow (\xi, \eta)$ $\frac{\int_{t=\xi \sinh \eta} \eta}{\int_{t=\xi \sinh \eta} \eta}$
- The observer's trajectory is $\xi=1$, and all η
- The Minkowski metric in Rindler coordinate $ds^2 = (\xi^2)d\eta^2 + d\xi^2 + dy^2 + dz^2$
- spacetime is separate into two parts, left and right Rindler wedges, doesn't communicate each other
- From observer's point of view (ξ =1), light moves at ξ <1 is slower than 1.
- At ξ =0, light stops (Black wall).

Thermalization theorem

- Spacetime with time-like Killing vector (metric is invariant along with the vector) has well defined energy
- Thermalization theorem (Tolman-Eherenfest):

For any thermal equilibrium field, local temperature times time-like Killing vector is constant: $T \cdot q_{00}^{1/2} = \mathrm{const}$

c.f. redshift frequency

$$\nu(P') = \nu(P) \cdot \sqrt{g_{00}(P)/g_{00}(P')}$$

Vacuum of Massless Dirac field (Fermi sea)

$$|0_M\rangle = \prod_{\omega_k^M < 0} b_k^{\dagger} |\Omega\rangle$$

Vacuum of accelerated observable, Hamiltonian H_R

$$|0_R\rangle = \prod_{\omega_q^R < 0} d_q^{\dagger} |\Omega\rangle$$

- Minkowski vacuum is not vacuum (either eigenstate) of H_R
- For the observer, field in left Rindler Wedge (LRW) is not causal, state of LRW dof is traced out (loss of information)

$$\rho_R = \operatorname{Tr}_L |0_M\rangle \langle 0_M|$$

- Density matrix can always formally written as a thermal state using entanglement Hamiltonian H_E $\rho_R = \exp(-H_E)$
- H_E and H_R commute according to boost invariance of Minkowski vacuum $0 = \dot{\rho}_R = -\frac{i}{\hbar}[\rho_R, H_R]$
- It can be explicitly proved H_E is proportional to H_R

$$\rho_R = \exp\left(-\frac{H_R}{k_B T_U}\right) \qquad k_B T_U = \frac{\hbar a}{2\pi}.$$

Minkowski vacuum turns out stationary to an accelerated observer

Unruh effect

- Two different mode expansions of the same fermion field with definite wavefunctions
- Bogoliubov transformation $d_q^\dagger = \sum U_{qk} b_k^\dagger$
- Occupation of Rindler mode on the Minkowski vacuum (IR cutoff by radius ε)

$$n_{q,\mathbf{r}} \equiv \int_{D_{\mathbf{r},\epsilon}} \langle 0_M | d_q^{\dagger} | \mathbf{r}' \rangle \langle \mathbf{r}' | d_q | 0_M \rangle = \sum_{\omega_k^M < 0} |\tilde{U}_{qk}(\mathbf{r})|^2,$$

$$n_{q,\mathbf{r}} = \frac{1}{\exp(\hbar\omega_q^R/k_B T_U(\mathbf{r})) + 1}$$
 $k_B T_U(\mathbf{r}) = \frac{\hbar}{2\pi x}$

 De Witt detector (minimally coupled to fermion field at r), whose absorption/emission is written by Wightman function

$$G(t) \equiv \langle 0_M | c_{x(t)}^{\dagger}(t) c_{x(0)}(0) | 0_M \rangle$$

- x(t): trajectory of the observer, c_x is the annihilation operator at x
- detector response function $G(\omega)$, Fourier transformation of G(t)

Unruh effect (contd.)

- Minkowski operator $\mathbf{b_k}$ in terms of coordinate space operator $\mathbf{c_x}$ ($\mathbf{M_{kx}}$: wave function = plane wave) $b_k^\dagger = \sum M_{kx} c_x^\dagger$
- Rindler operator d_q in terms of coordinate space operator c_x (R_{qx} : wave functions)

$$d_q^{\dagger} = \sum_x R_{qx} c_x^{\dagger}$$

c.f. Bogoliubov transformation

$$d_q^{\dagger} = \sum_k U_{qk} b_k^{\dagger} \qquad \qquad \underline{U_{qk}} = \sum_x R_{qx} \underline{M}_{kx}$$

Detector response function

$$G_{x_0}(\omega) \equiv \int dt \, e^{-i\omega t} \langle 0_M | c_{x_0}^{\dagger}(t) c_{x_0}(0) | 0_M \rangle$$

$$= \sum_{q,q'} \delta(\omega - \omega_q^R) \bar{R}_{qx_0} R_{q'x_0} \sum_{\omega_k^M < 0} \bar{U}_{qk} U_{q'k} = \frac{1}{\exp(\hbar \omega_q^R / k_B T_U(\mathbf{r})) + 1} \qquad k_B T_U(\mathbf{r}) = \frac{\hbar}{2\pi x}$$

is the Fermi-Dirac thermal distribution (in 1+1 dim and 3+1 dim)

is Bose-Eistein distribution (in 2+1 dim) for Fermion, and opposite for Boson (Takagi's inverse theorem)

$$G(\omega) = \frac{1}{\exp(\omega/T(x)) - 1}, \qquad T(x) = \frac{1}{2\pi x}$$

Dirac fermion in Rindler Lattice

Minkowski Dirac Hamiltonian

$$i\partial_0 \psi = \mathcal{H}\psi = -i\gamma_0 \gamma^j \partial_j \psi$$
 $i\partial_t \psi = -i(\partial_x \sigma_x + \partial_y \sigma_y) \psi$

• curved spacetime Hamiltonian $(w_{\mu} : spin connection)$

$$\partial_{\mu}\psi \to D_{\mu}\psi \equiv \left(\partial_{\mu} + \frac{1}{4}w_{\mu}^{ab}\gamma_{ab}\right)\psi \qquad \gamma_{ab} \equiv \frac{1}{2}[\gamma_{a}, \gamma_{b}].$$

$$i\partial_{t}\psi = -i\gamma_{t}\left(\gamma^{j}\partial_{j} + \frac{1}{4}\gamma^{j}w_{j}^{ab}\gamma_{ab} + \frac{1}{4}\gamma^{t}w_{t}^{ab}\gamma_{ab}\right)\psi$$

- Rindler coordinate $ds^2 = -x^2dt^2 + dx^2 + dy^2$
- spin connection (others are zero) $w_t^{01} = x/|x|$
- Dirac equation and Hamiltonian density

$$i\partial_t \psi = -i\left(\left(|x|\partial_x + \frac{1}{2}\frac{x}{|x|}\right)\sigma_x + |x|\partial_y \sigma_y\right)\psi \qquad \mathcal{H}_R = -i\left(\left(|x|\partial_x + \frac{1}{2}\frac{x}{|x|}\right)\sigma_x + |x|\partial_y \sigma_y\right)$$

$$\mathcal{H}_R = \sqrt{x}\not p\sqrt{x}.$$

- Second quantized Hamiltonian $H_R = \int dx dy \, \bar{\psi}^{\dagger} \mathcal{H}_R \psi$
- $\mathbf{x}=0$ is the boundary (any boundary condition is allowed at $|\mathbf{x}|=0$)

Eigenstate of Rindler Hamiltonian in 1+1 dim

- 1-particle Hamiltonian (density) $H_{R(1D)} = \sqrt{x} p \sqrt{x}$
- variable transformation u = log(x). (boundary x=0 is u→ ∞)

$$H_{R(1D)} = -i(\partial_u + 1/2)$$

eigenvalue equation

$$-i(x\partial_x + 1/2)\psi(x) = -i(\partial_u + 1/2)\psi(u) = \omega\psi(u)$$

eigen functions (plane waves in u = log(x))

$$\psi(u) = A \, \exp\left[\left(i\omega - \frac{1}{2}\right)u\right] = A \, x^{i\omega - 1/2}$$
 orthonormal

$$\int_0^\infty dx \exp((-i\omega - 1/2)u) \exp((i\omega' - 1/2)u) =$$
$$\int_{-\infty}^\infty du \exp(-i\omega u) \exp(i\omega' u) = \delta(\omega - \omega').$$

$$-i(x\partial_x + 1/2)\sigma_x\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} = \omega\begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix} \qquad \begin{pmatrix} \psi_1(x,t) \\ \psi_2(x,t) \end{pmatrix} = A\begin{pmatrix} 1 \\ \pm 1 \end{pmatrix} x^{i\omega - 1/2} e^{-i\omega t}$$

Lattice Discretization

- 1+1 dim $H_{R(1D)} = \sqrt{x}p\sqrt{x}$
- $x_m = m d$, d: lattice spacing, m = -(L-1) / 2, ..., (L-1)/2, even L
- ullet symmetric derivative for $p=-i\partial_x$

$$(p\psi)_m = -i(\psi_{m+1} - \psi_{m-1})/(2d)$$

 \blacksquare 1 particle Hamiltonian $\ H_{R(1D)} = \sqrt{x} p \sqrt{x}$

$$R_{m,m+1} = -\frac{i}{2} \sqrt{m(m+1)}$$

for 2+1 dim

$$H_R = -\sum_{m,n} t_0' \left((m + \frac{1}{2}) e^{i\frac{\pi}{2}(m-n)} c_{m+1,n}^{\dagger} + m e^{i\frac{\pi}{2}(m-n)} c_{m,n+1}^{\dagger} \right) c_{m,n} + \text{H.c.},$$

Simulating Unruh effect

Detector response function $G(\omega)$, Fourier transformation of

$$G(t) \equiv \langle 0_M | c_{x(t)}^{\dagger}(t) c_{x(0)}(0) | 0_M \rangle$$

- Measure overlap between the states of one-hole excitation at t=0 and t
- In Right Rindler coordinate, observer's trajectory is $x(0) = x(t) = x_0$ (frame independence, equivalence principle)
- Strategy: quench from Minkowski Hamiltonian to Rindler spacetime
- Prepare Mikowski vacuum
- 2. Quench: Switch Hamiltonian from Minkowski H_M to Rindler H_R quench introduces event horizon, disconnecting the L/R Wedges
- 3. Measure G(t) in Rindler frame at $x=x_0$

Numerical simulation

- 2+1 dim and 1+1 dim
- space size Lx, Ly
- time step t0 for Minkowski
- time step t0' for Rindler chose t0' = 2 t0 / Lx
- Lattice spacing d = t0

$$H_{M} = -\sum_{m,n} t_{0} \left(e^{i\frac{\pi}{2}(m-n)} c_{m+1,n}^{\dagger} + e^{i\frac{\pi}{2}(m-n)} c_{m,n+1}^{\dagger} \right) c_{m,n} + \text{H.c.}$$

$$H_{R} = -\sum_{m,n} t'_{0} \left((m + \frac{1}{2}) e^{i\frac{\pi}{2}(m-n)} c_{m+1,n}^{\dagger} + m e^{i\frac{\pi}{2}(m-n)} c_{m,n+1}^{\dagger} \right) c_{m,n} + \text{H.c.},$$

expectation
$$G(\omega) = \frac{1}{\exp(\omega/T(x)) + 1}, \quad T(x) = \frac{1}{2\pi x}$$

$$\xi G(\omega/\xi) = \xi \frac{1}{\exp(\pi L_x \omega) + 1}, \quad \xi = 2x/L_x$$

- Lx = 500, 1+1 dim
- x = md (smaller x is hotter temperature)
- $|\omega| t_0| > 1$ is time-step discretization

$$G(\omega) = \frac{1}{\exp(\omega/T(x)) + 1}, \quad T(x) = \frac{1}{2\pi x}$$

$$\xi G(\omega/\xi) = \xi \frac{1}{\exp(\pi L_x \omega) + 1}, \qquad \xi = 2x/L_x$$

- **2+1** dim Lx = Ly = 100
- Bose Einstein distribution

transition from 1+1 dim to 2+1 dim

$$G(\omega) = \frac{1}{\exp(\omega/T(x)) - 1}, \qquad T(x) = \frac{1}{2\pi x}$$

$$\xi G(\omega/\xi) = \xi \frac{1}{\exp(\pi L_x \omega) - 1}, \qquad \xi = 2x/L_x$$

Discretization error

1+1 dimension (Fermi-Dirac)

2+1 dim (Bose-Einstein)

Discussions and Prospects

- Authors proposed optical lattice experiment
- Apply this in digital quantum computation? Number of Qbits too demanding?
- Unruh effect for interacting theory such as Schwinger model?
 (radiation for photon and electron?)

- Pure quantum state, namely Minkowski vacuum, turns into thermal mixed state preparation, which is exponentially large operation otherwise.
- Minkowski vacuum could be prepared via adiabatic deformation from solvable Hamiltonian (Gumaro, Yuuta et al are now trying ultraefficient preparation)
- Could we engineer different coordinate system so that the temperature is constant everywhere?